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Generalized linear model
Logistic regression



The General Linear Model

In a general linear model

the response y. is modelled by a linear function
of explanatory variables x;, plus an error term



General and Linear Model

Here general refers to the dependence on
potentially more than one explanatory variables,
v.s. the simple linear model.

= o+ 1 *+

The model is linear in the coefficients,

but not




Error structure
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Restrictions of Linear Models

Although a useful framework, there are some situations
where general linear models are not appropriate

» the range of Y is restricted (e.g. binary, count)
 the variance of Y depends on the mean

Generalized linear models extend the general linear
model framework to address both of these issues



GLM potential response variables

e Count data expressed as proportions



Generalized Linear Models (GLMSs)

A generalized linear model is made up of three things:
e alinear predictor

= o+ 1 + +

and two functions

* alink function that describes how the mean, E(Yi) = ui depends on the
linear predictor

()=

* An variance function that describes how the variance, var(Yi) depends on
the mean

()= ()

where the dispersion parameter @ is a constant fror structure



Normal General Linear Model as a
Special Case



Error structure



Possible GLM error distributions



Transformations vs. GLM

In some situations a response variable can be
transformed to improve linearity and homogeneity of
variance so that a general linear model can be
applied.

This has some drawbacks
 response variable has changed!

* transformation must simultaneously improve
linearity and homogeneity of variance

» transformation may not be defined on the
boundaries of the sample space
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GLM: Logistic regression, binomial family

Probability of Norway spruce

occurrence along an altitudinal
gradient
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GLM: Poisson regression, Poisson family
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GLM: Survival analysis

Survival Distributions by Gender
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